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7 THE PROBLEM Y4 THE Al SOLUTION N\

Oral cavity squamous cell carcinoma (OSCC) is aggressive 5-year Deep learning-based multiple instance learning applied to routine
survival only ~50% H&E whole slide images (WSI) of primary tumour.

30% of patients relapse locally despite surgery + adjuvant Aims to predict treatment response by providing a relative risk of
radiotherapy or chemoradiotherapy (RT/CRT) recurrence

Currently, clinicians cannot predict who will benefit from adjuvant Builds on validated pipelines from HPV+ oropharyngeal cancer and
RT/CRT — leading to unnecessary treatment toxicity and poor breast cancer lymph node studies

outcomes I/ \\ /

4 THE PIPELINE Y IN PARALLEL

Cohort: 99 OSCC patients treated at Guy’s & St Thomas’ NHS Foundation Trust (2010-2018) )
« We tested a previously developed Al model,

Treatment: Surgery + post-operative radiotherapy (6066 Gy IMRT); 30% also received s 18 el el R 22T

chemotherapy )
* HEPT can segment, classify and measure

individual cells and subcellular features in

Demographics )
H&E sections

» Median age 62.5 yrs (range 31-82), 61% male

» Primary sites: Tongue (40%), alveolar ridge (22%), floor of mouth (18%)
» TNM8 stage: 95% stage IVA-IVB

» 48% experienced disease recurrence

* We tested HEPT on a subset of 10 OSCC
cases

Methods « For each case, we selected 10

» Attention-based multiple instance learning to highlight areas of interest representative image tiles from the WSI

» Visual analysis by consultant histopathologist to review areas of interest and suggest

biological reasoning * HEPT outputs quantitative inter and intra
cell features. E.g. number of tumour
WSI Tessellation Feature Extraction ‘%. . invading Iymphocytes or nuclear density
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Cnf;:;”;‘:‘jw D::E‘}W . 0 Ic%'; Fig 3: HEPT deep learing-based pipeline for histological analysis. Steps

include pixel classification, nuclear mask overlay and feature extraction.
§ . . — . . Fig 2: Sample WSI with primary tumour seen at bottom Image taken from original paper Hue et al. 2023
Fig 1: Deep learning-based pipeline for prediction of recurrence risk and explanation right (a), with heat map overlay showing regions of

x\ interest suggesting higher risk for recurrence (b) j \_ Yy,
/ WHAT’S NEXT? \\ RESULTS SO FAR.. )
M om

Validate the deep learning model with an external data set fr
Malaysia

» Successfully predict recurrence risk with C-index > 0.7 within
internal test data.

+ Add additional data modalities (clinical data, RNA expression) to Able to identify clinically explainable regions of a WSl salient to a
improve model accuracy risk prediction.

* Improving explainability of results:

J
- Visual analysis of heatmaps MY MILESTONES \

- Utilising the HEPT (H&E profiling tool) model to gain granular Completed high-quality slide annotation in QuPath (a application
information on the of areas of interest in the heatmaps. which allows WSI annotation)
Tested the HEPT (H&E profiling tool) model on our data set, in
* Improve interpretability to support future clinical trust & adoption preparation of its use in explainability

Acted as clinical-technical liaison across KCL, GSTT and CSC

» Explore integration into clinical trial stratification and NHS clinical groups
pathways j
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